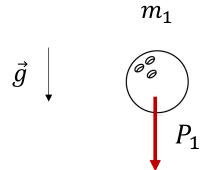
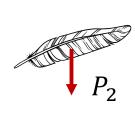


Balística: queda livre e lançamento vertical

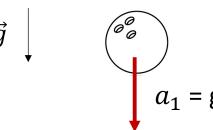

Setor A: Aulas 32 / Pg. 540 / Alfa 4


- SL 02 Teoria / Revisão
- SL 14 Exercícios

Apresentação e demais documentos: fisicasp.com.br

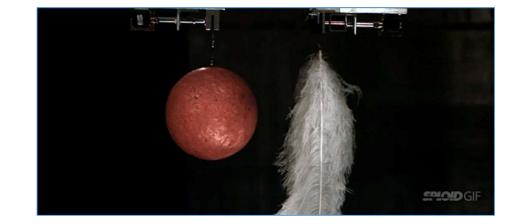
Professor Caio – Física / Setor A

Análise dinâmica



 $a_2 = g$

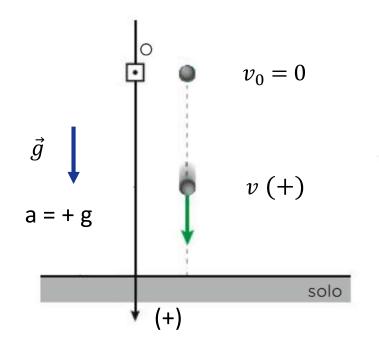
 m_2



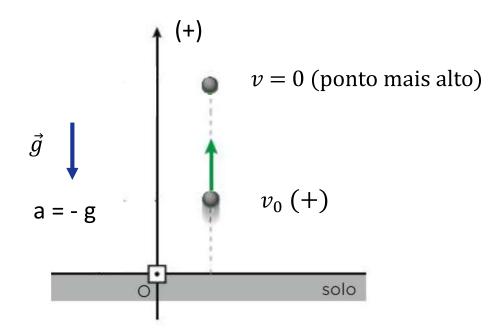
$$m_1$$
 m_2 $a_1 = g$ $a_2 = g$

$$R_1 = P_1$$
 $R_2 = P_2$ $m_1 \cdot a_1 = m_1 \cdot g$ $m_2 \cdot a_2 = m_2 \cdot g$

$$a_1 = g$$



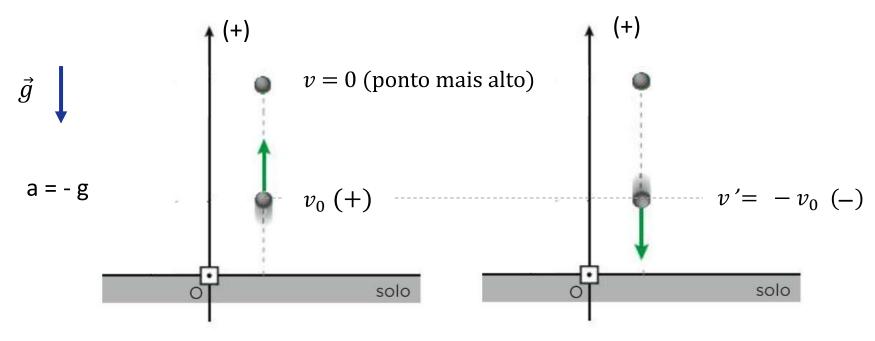
Análise cinemática


$$|a| = g \text{ (cte)} \qquad \Longrightarrow \qquad \text{MUV} \qquad \begin{cases} S = S_0 + V_0 \cdot t + \frac{1}{2} a \cdot t^2 \\ v = v_0 + a \cdot t \end{cases}$$

$$v^2 = v_0^2 + 2a \cdot \Delta S$$

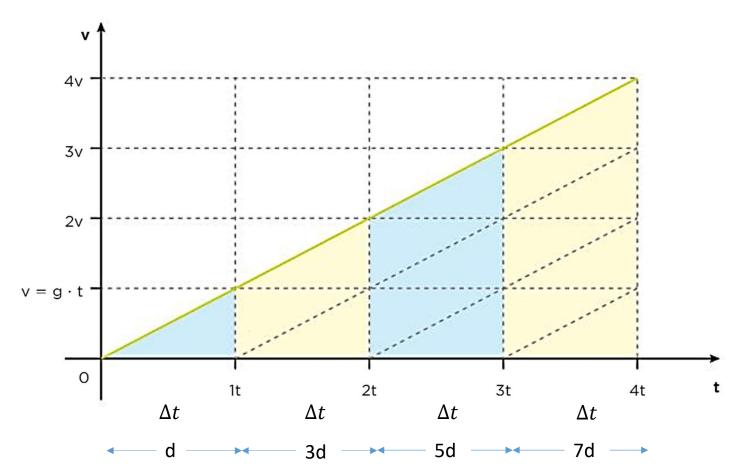
Queda livre

Lançamento vertical

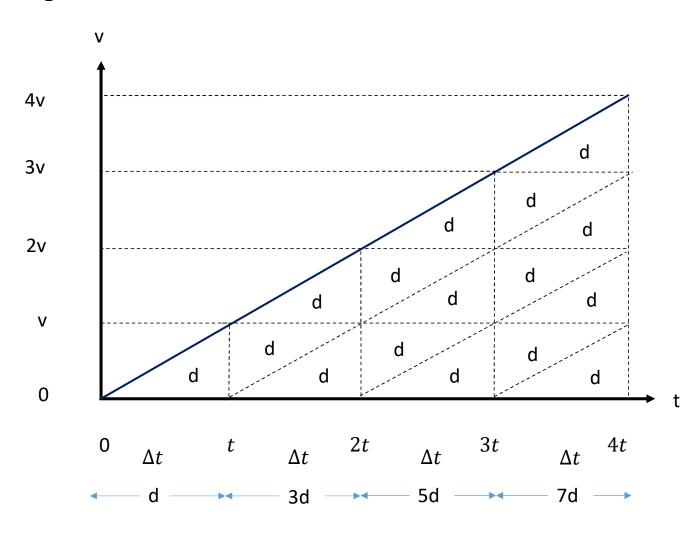


Análise cinemática

$$|a| = g \text{ (cte)} \qquad \Longrightarrow \qquad \text{MUV} \qquad \begin{cases} S = S_0 + V_0 \cdot t + \frac{1}{2} a \cdot t^2 \\ v = v_0 + a \cdot t \end{cases}$$

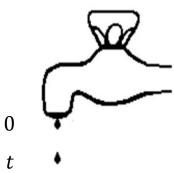

$$v^2 = v_0^2 + 2a \cdot \Delta S$$

Combinando os dois



Regra de Galileu

Quando um corpo se movimenta em MUV, como em queda livre, as distâncias por ele percorridas em iguais intervalos de tempo são proporcionais aos números ímpares.

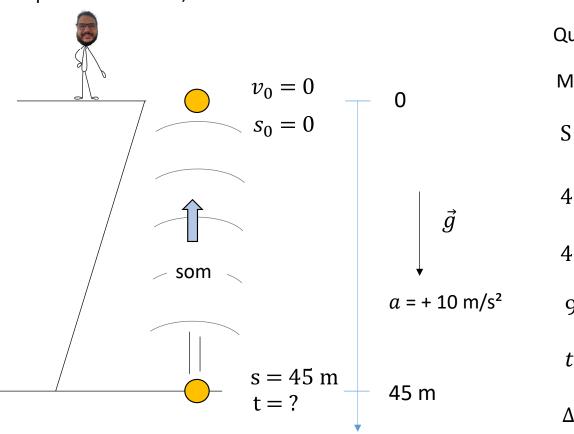

Regra de Galileu

$$v = v_0 + a.t$$

$$v = + g.t$$

$$|\Delta S| \stackrel{\mathsf{N}}{=} \mathsf{A}$$

Exercícios


1. (Fuvest-SP) Em uma tribo indígena de uma ilha tropical, o teste derradeiro de coragem de um jovem é deixar-se cair em um rio, do alto de um penhasco. Um desses jovens se soltou verticalmente, a partir do repouso, de uma altura de 45 m em relação à superfície da água. O tempo decorrido, em segundos, entre o instante em que o jovem iniciou sua queda e aquele em que um espectador, parado no alto do penhasco, ouviu o barulho do impacto do jovem na água é, aproximadamente,

- a) 3,1.
- b) 4,3.
- c) 5,2.
- d) 6,2.
- e) 7,0.

Note e adote:

- . Considere o ar em repouso e ignore sua resistência.
- . Ignore as dimensões das pessoas envolvidas.
- . Velocidade do som no ar: 360 m/s.
- . Aceleração da gravidade: 10 m/s².

1. (Fuvest-SP) Em uma tribo indígena de uma ilha tropical, o teste derradeiro de coragem de um jovem é deixar-se cair em um rio, do alto de um penhasco. Um desses jovens se soltou verticalmente, a partir do repouso, de uma altura de 45 m em relação à superfície da água. O tempo decorrido, em segundos, entre o instante em que o jovem iniciou sua queda e aquele em que um espectador, parado no alto do penhasco, ouviu o barulho do impacto do jovem na água é, aproximadamente,

Queda livre

MUV

$$S = S_0 + V_0 \cdot t + \frac{1}{2} a \cdot t^2$$

$$45 = 0 + 0.t + \frac{1}{2}10.t^2$$

$$45 = 5 t^2$$

$$9 = t^2$$

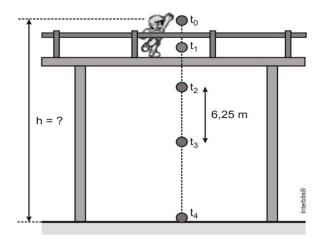
$$t = 3 s$$

$$\Delta t_{queda}$$
 = 3 s

Para o som

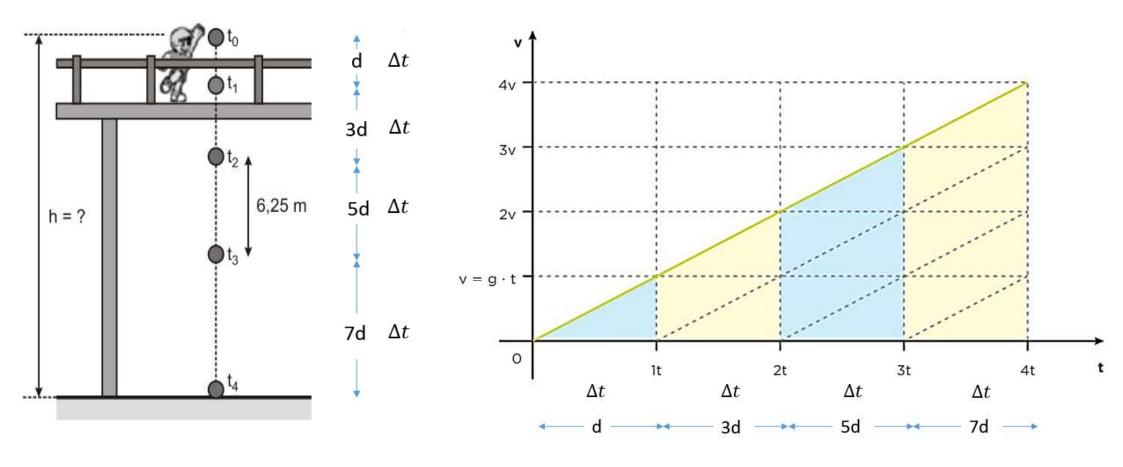
MU

$$v_{som} = \frac{\Delta S}{\Delta t}$$


$$\Delta t = \frac{\Delta S}{v_{som}}$$

$$\Delta t = \frac{45}{360} \cong 0,125 \text{ s}$$

$$\Delta t_{total} = 3 + 0.125 = 3.125 \text{ s}$$

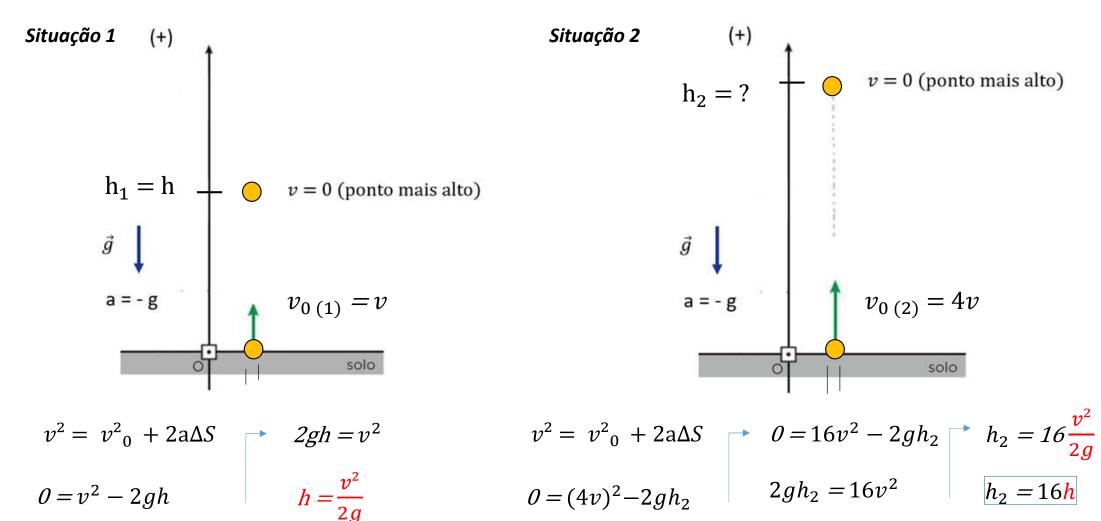

Alternativa a) 3,1.

2. (Unesp) Em um dia de calmaria, um garoto sobre uma ponte deixa cair, verticalmente e a partir do repouso, uma bola no instante t_0 = 0 s. A bola atinge, no instante t_4 , um ponto localizado no nível das águas do rio e à distância h do ponto de lançamento. A figura apresenta, fora de escala, cinco posições da bola, relativas aos instantes t_0 , t_1 , t_2 , t_3 e t_4 . Sabe-se que entre os instantes t_2 e t_3 a bola percorre 6,25 m e que g = 10 m/s².

Desprezando a resistência do ar e sabendo que o intervalo de tempo entre duas posições consecutivas apresentadas na figura é sempre o mesmo, pode-se afirmar que a distância h, em metros, é igual a

- a) 25.
- b) 28.
- c) 22.
- d) 30.
- e) 20.

$$h = \frac{16.6,25}{5} = 20 \text{ m}$$


Alternativa e) 20

3. (PUC-RJ) A partir do solo, uma bola é lançada verticalmente com velocidade v e atinge uma altura máxima h. Se a velocidade de lançamento for aumentada em 3v, a nova altura máxima final atingida pela bola será:

Despreze a resistência do ar.

- a) 2h
- b) 4h
- c) 8h
- d) 9h
- e) 16h

3. (PUC-RJ) A partir do solo, uma bola é lançada verticalmente com velocidade v e atinge uma altura máxima h. Se a velocidade de lançamento for aumentada em 3v, a nova altura máxima final atingida pela bola será:

Indique a soma das alternativas corretas

4. (UEPG-PR) Um objeto com uma massa de 1 kg (objeto 1) é lançado verticalmente para cima, a partir do solo, com uma velocidade de 10 m/s. Simultaneamente, um outro objeto, com uma massa de 2 kg (objeto 2), é solto a partir do repouso de uma altura de 10 m em relação ao solo.

Desprezando o atrito com o ar, e considerando a aceleração da gravidade igual a 10 m/s², assinale o que for correto.

- (01) Os movimentos dos objetos 1 e 2 são uniformemente variados.
- (02) Os objetos atingem o solo no mesmo instante.
- (04) Enquanto o objeto 1 estiver subindo, seu movimento é retardado.
- (08) O movimento do objeto 2 é acelerado.
- (16) Os dois objetos irão se cruzar na altura de 5 m.

Nesta questão, adotaremos a origem dos espaços no solo e orientaremos a trajetória para cima.

- (01) Correta. Ambos os movimentos são uniformemente variados com a aceleração, em módulo, igual à aceleração gravitacional.
- (02) Incorreta.

$$v_1 = v_{0.1} - g \cdot t \Rightarrow 0 = 10 - 10 \cdot t : t = 1 s$$

Logo, o objeto 1 demora 1 s para subir e 1 s para descer, ou seja, demora 2 s para atingir o solo.

$$s_2 = s_{0,2} + y_{0,2} \cdot t - \frac{g \cdot t^2}{2} \Rightarrow 0 = 10 - 5 \cdot t^2 : t \approx 1,42 s$$

Logo, o objeto 2 demora 1,42 s para atingir o solo.

- (04) Correta. Durante a subida, o corpo retarda com aceleração, em módulo, igual à aceleração gravitacional.
- (08) Correta. O objeto 2 cai em queda livre, e, por isso, seu movimento é acelerado desde o instante inicial.
- (16) Correta. Em 1 s, ambos os objetos estão se cruzando a 5 m do solo,

$$s_1 = s_{0,1} + v_{0,1} \cdot t - \frac{g \cdot t^2}{2} \Rightarrow s_1 = 10 \cdot t - 5 \cdot t^2$$

$$s_2 = s_{0,2} + y_{0,2} \cdot t - \frac{g \cdot t^2}{2} \Rightarrow s_2 = 10 - 5 \cdot t^2$$

Fazendo $s_1 = s_2$:

$$10 \cdot t - 5 \cdot t^2 = 10 - 5 \cdot t^2$$
 : $t = 1$ s

Resposta: 01 + 04 + 08 + 16 = 29.