
## O fóton e Efeito Fotoelétrico

- FGB / Caderno 7 / Módulo 6 / Objetivo 4 / Pg. 354

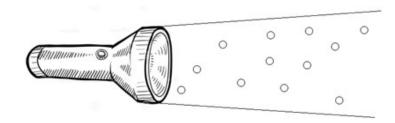
Apresentação, orientação e tarefa: **fisicasp.com.br** 

**Professor Caio – Física** 

## 1. Dualidade onda-partícula



## Exemplos:


- Interferência
- Difração

## Exemplos:

- Efeito fotoelétrico
- Efeito Compton
- Reflexão

### 2. Fóton

• Um feixe de radiação pode ser tratado como um conjunto de fótons.



• A energia de cada fóton é dada pela expressão.

$$E = hf$$

• Ainda podemos utilizar a equação fundamental da ondulatória.

$$v = \lambda . f$$

• Se o feixe estiver se propagando no ar ou no vácuo.

$$v = c = 3.10^8 \text{ m/s}$$

### Unidades do SI

- E: Energia associada, medida em J
- h: Constante de Planck (h =  $6.6 \times 10^{-34} \text{ J.s}$ )
- f: frequência da onda, medida em Hz

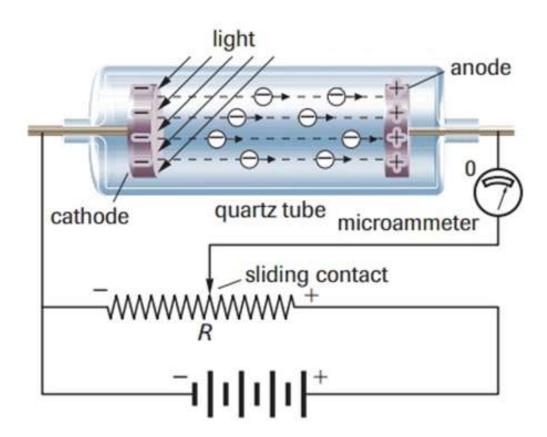


# **Efeito Fotoelétrico**

 $https://phet.colorado.edu/sims/cheerpj/photoelectric/latest/photoelectric.html?simulation=photoelectric\&locale=pt\_BR$ 

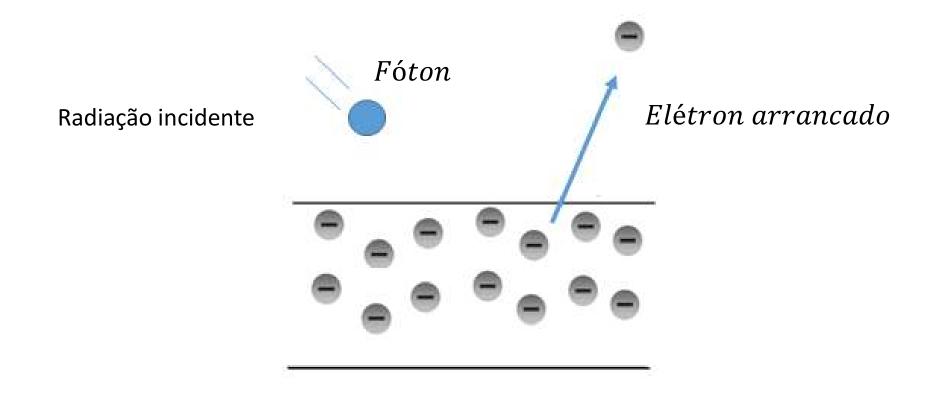
### — 3. Efeito fotoelétrico

Foi descoberto em 1887 pelo alemão Heinrich Hertz.


Hertz descobriu que uma descarga elétrica entre dois eletrodos ocorre mais facilmente quando luz ultravioleta incide sobre um deles.



### 3. Efeito fotoelétrico

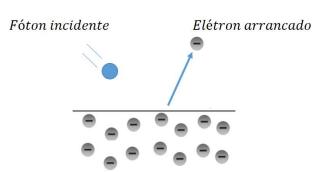

Em 1914 Robert Milikan estudou o efeito Fotoelétrico e recebeu o prêmio Nobel em 1923.





### 3. Efeito fotoelétrico

• Ocorre quando radiação incide em uma superfície metálica e arranca elétrons.






## 3. Efeito fotoelétrico: a teoria quântica de Einstein (1905 e Prêmio Nobel em 1921)

A energia do fóton incidente é dada por


$$E_{f \circ ton} = hf$$



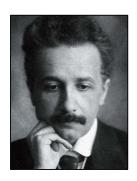
• A energia cinética do elétron ( $E_{c\ elétron}$ ) ejetado é calculada pela diferença entre a energia do fóton incidente ( $E_{fóton}$ ) e o trabalho realizado para retirar o elétron do material (W).

$$E_{c \ el \acute{e}tron} = E_{f \acute{o}ton}$$
 - W

$$E_{c \ el \acute{e}tron} = hf - W$$



Energia cinética do elétron ejetado


Energia do fóton incidente

Energia necessária para arrancar um elétron (função trabalho)

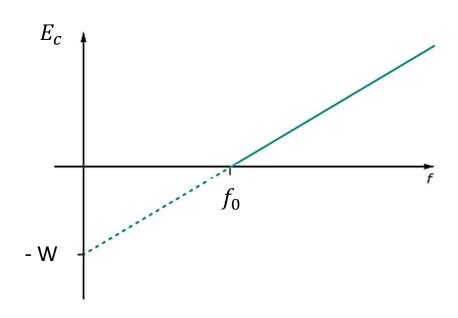


## - 3. Efeito fotoelétrico: a teoria quântica de Einstein (1905 e Prêmio Nobel em 1921)

- Um elétron absorve apenas um fóton.
- O elétron é emitido de maneira instantânea.
- Se a energia do fóton incidente ( $E_{fóton}$ ) for menor do a energia necessária para arrancar um elétron (W), o elétron não é arrancado.



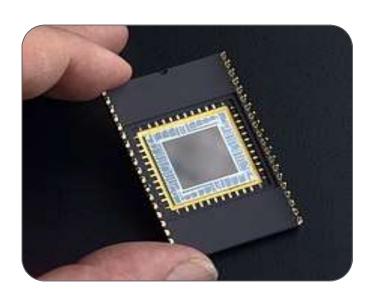
## Frequência de corte ( $f_0$ )


- Frequência mínima para ocorrer o Efeito Fotoelétrico
- Nesse caso o fóton tem energia suficiente apenas para arrancar um elétron, sem sobra.
- O elétron é ejetado com  $E_{c\ elétron}$  = 0.

$$E_{c\ el{e}tron} = E_{f{\circ}ton}$$
- W

$$0 = E_{f \circ ton}$$
- W

$$E_{f \circ ton} = W$$


$$h. f_0 = W \longrightarrow f_0 = \frac{W}{h}$$



# 4. Aplicações do Efeito Fotoelétrico: dispositivo de carga acoplada







# 4. Aplicações do Efeito Fotoelétrico: dispositivo de carga acoplada



# Exercícios

- 1. (Fuvest 2016) Lasers pulsados de altíssima potência estão sendo construídos na Europa. Esses lasers emitirão pulsos de luz verde, e cada pulso terá  $10^{15}$  W de potência e duração de cerca de 30 .  $10^{-15}s$ . Com base nessas informações, determine
- a) o comprimento de onda  $\lambda$  da luz desse laser;
- b) a energia E contida em um pulso;
- c) o intervalo de tempo Δt durante o qual uma lâmpada LED de 3W deveria ser mantida acesa, de forma a consumir uma energia igual à contida em cada pulso;
- d) o número N de fótons em cada pulso.

#### Note e adote:

Frequência da luz verde:  $f = 0.6 \cdot 10^{15} Hz$ 

Velocidade da luz =  $3 \cdot 10^8$  m/s

Energia do fóton: E = h . f

1. (Fuvest 2016) Lasers pulsados de altíssima potência estão sendo construídos na Europa. Esses lasers emitirão pulsos de luz verde, e cada pulso terá  $10^{15}$  W de potência e duração de cerca de 30 .  $10^{-15}s$ . Com base nessas informações, determine

a) o comprimento de onda  $\lambda$  da luz desse laser;

Rascunho

$$\lambda$$
 = ?  
 $v$  =  $c$  = 3 .  $10^8$  m/s  
 $f$  = 0,6 .  $10^{15}$ Hz

$$v = \lambda \cdot f$$

 $v = \lambda \cdot f$ 

$$3.10^8 = \lambda .0,6.10^{15}$$

$$\lambda = \frac{3 \cdot 10^8}{0.6 \cdot 10^{15}}$$
  $\lambda = 5 \cdot 10^{-7} \text{ m}$ 

Note e adote:

Frequência da luz verde:  $f = 0.6 \cdot 10^{15} Hz$ 

Velocidade da luz =  $3 \cdot 10^8$  m/s

Energia do fóton: E = h . f

1. (Fuvest 2016) Lasers pulsados de altíssima potência estão sendo construídos na Europa. Esses lasers emitirão pulsos de luz verde, e cada pulso terá  $10^{15}$  W de potência e duração de cerca de 30 .  $10^{-1}\,$  s. Com base nessas informações, determine

b) a energia E contida em um pulso;

Rascunho

Para um pulso 
$$E = ?$$

$$P = 10^{15} W$$

$$\Delta t = 30 \cdot 10^{-1} \ s$$

$$P = \frac{E}{\Delta t}$$

$$E = P \cdot \Delta t$$

$$E = 10^{15} . 30 . 10^{-15}$$

$$E = 30 J$$

Note e adote:

Frequência da luz verde:  $f = 0.6 \cdot 10^{15} Hz$ 

Velocidade da luz =  $3 \cdot 10^8$  m/s

Energia do fóton: E = h . f

1. (Fuvest 2016) Lasers pulsados de altíssima potência estão sendo construídos na Europa. Esses lasers emitirão pulsos de luz verde, e cada pulso terá  $10^{15}$  W de potência e duração de cerca de 30 .  $10^{-15}s$ . Com base nessas informações, determine

c) o intervalo de tempo Δt durante o qual uma lâmpada LED de 3W deveria ser mantida acesa, de forma a consumir uma energia igual à contida em cada pulso;

Rascunho

Para uma lâmpada

$$P = 3W$$

$$E = 30 J$$
  $\Delta t = ?$ 

$$P = \frac{E}{\Delta t}$$

$$\Delta t = \frac{E}{P}$$

$$\Delta t = \frac{30}{3}$$

$$\Delta t = 10 s$$

Note e adote:

Frequência da luz verde:  $f = 0.6 \cdot 10^{15} Hz$ 

Velocidade da luz =  $3 \cdot 10^8$  m/s

Energia do fóton: E = h . f

1. (Fuvest 2016) Lasers pulsados de altíssima potência estão sendo construídos na Europa. Esses lasers emitirão pulsos de luz verde, e cada pulso terá  $10^{15}$  W de potência e duração de cerca de 30 .  $10^{-15}s$ . Com base nessas informações, determine

d) o número N de fótons em cada pulso.

### Rascunho

Para um fóton Para um feixe

$$E_{f \circ ton} = hf$$
  $E_{f eixe} = 30 \text{ J}$ 

N fótons

$$E_{feixe} = N \cdot E_{fóton}$$

$$E_{feixe} = N \cdot E_{fóton}$$

$$E_{\text{feixe}} = N \cdot h \cdot f$$

$$30 = N.6.10^{-34}.0,6.10^{15}$$

$$30 = N.3,6.10^{-19}$$

$$N = \frac{30}{3.6 \cdot 10^{-19}}$$

$$N \cong 8.3 \cdot 10^{19}$$
 fótons

Note e adote:

Frequência da luz verde:  $f = 0.6 \cdot 10^{15} Hz$ 

Velocidade da luz =  $3 \cdot 10^8$  m/s

Energia do fóton: E = h . f

- 2. (Fuvest 2012) Em um laboratório de física, estudantes fazem um experimento em que radiação eletromagnética de comprimento de onda  $\lambda=300$  nm incide em uma placa de sódio, provocando a emissão de elétrons. Os elétrons escapam da placa de sódio com energia cinética máxima  $E_{c\;el\acute{e}t}=E_{f\acute{o}ton}$  W , sendo E a energia de um fóton da radiação e W a energia mínima necessária para extrair um elétron da placa. A energia de cada fóton é  $E_{f\acute{o}ton}$  = h f, sendo h a constante de Planck e f a frequência da radiação. Determine
- a) a frequência f da radiação incidente na placa de sódio;
- b) a energia E de um fóton dessa radiação;
- c) a energia cinética máxima Ec de um elétron que escapa da placa de sódio;
- d) a frequência  $f_0$  da radiação eletromagnética, abaixo da qual é impossível haver emissão de elétrons da placa de sódio.

#### NOTE E ADOTE

Velocidade da radiação eletromagnética: c = 3 · 108 m/s.

$$1 \text{ nm} = 10^{-9} \text{ m}.$$

$$h = 4 \cdot 10^{-15} \text{ eV.s.}$$

$$1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}.$$

2. (Fuvest 2012) Em um laboratório de física, estudantes fazem um experimento em que radiação eletromagnética de comprimento de onda  $\lambda=300$  nm incide em uma placa de sódio, provocando a emissão de elétrons. Os elétrons escapam da placa de sódio com energia cinética máxima  $E_{c\;el\acute{e}t}=E_{f\acute{o}ton}$  - W , sendo E a energia de um fóton da radiação e W a energia mínima necessária para extrair um elétron da placa. A energia de cada fóton é  $E_{f\acute{o}ton}$  = h f, sendo h a constante de Planck e f a frequência da radiação. Determine

a) a frequência f da radiação incidente na placa de sódio;

### Rascunho

$$\lambda = 300 \text{ nm} \qquad \qquad v = \lambda . f$$
 
$$v = c = 3 . 10^8 \text{ m/s}$$
 
$$f = ?$$

$$f = \frac{v}{\lambda}$$

$$f = \frac{3.10^8}{300.10^{-9}}$$
  $\implies$   $f = 0.01.10^{17} \text{ Hz}$   $\implies$   $f = 10^{15} \text{ Hz}$ 

#### NOTE E ADOTE

Velocidade da radiação eletromagnética: c = 3 · 108 m/s

$$1 \text{ nm} = 10^{-9} \text{ m}$$
.

$$h = 4 \cdot 10^{-15} \text{ eV.s.}$$

W (sódio) = 2,3 eV.

$$1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}.$$

2. (Fuvest 2012) Em um laboratório de física, estudantes fazem um experimento em que radiação eletromagnética de comprimento de onda  $\lambda=300$  nm incide em uma placa de sódio, provocando a emissão de elétrons. Os elétrons escapam da placa de sódio com energia cinética máxima  $E_{c\;el\acute{e}t}=E_{f\acute{o}ton}$  - W , sendo E a energia de um fóton da radiação e W a energia mínima necessária para extrair um elétron da placa. A energia de cada fóton é  $E_{f\acute{o}ton}=h$  f, sendo h a constante de Planck e f a frequência da radiação. Determine

b) a energia E de um fóton dessa radiação;

### Rascunho

E = ? 
$$1 \text{ Hz} = \frac{1}{s} \qquad \qquad E_{f \acute{o}ton} = \text{h.f}$$
 f =  $10^{15}$  Hz

$$f = 10^{15} \text{ Hz}$$
 $h = 4 \cdot 10^{-15} \text{ eV} \cdot \text{s}$   $E_{f \acute{o}ton} = \text{h} \cdot \text{f}$   $E_{f \acute{o}ton} = 4 \cdot 10^{-15} \text{ eV} \cdot \text{s} \times 10^{15} \frac{1}{s}$   $\Longrightarrow$   $E_{f \acute{o}ton} = 4 \text{ eV}$ 

### NOTE E ADOTE

Velocidade da radiação eletromagnética: c = 3 · 10 8 m/s.

$$1 \text{ nm} = 10^{-9} \text{ m}$$
.

$$h = 4 \cdot 10^{-15} \text{ eV.s.}$$

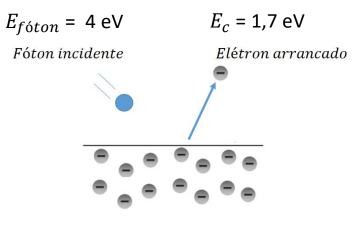
$$1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}.$$

2. (Fuvest 2012) Em um laboratório de física, estudantes fazem um experimento em que radiação eletromagnética de comprimento de onda  $\lambda=300$  nm incide em uma placa de sódio, provocando a emissão de elétrons. Os elétrons escapam da placa de sódio com energia cinética máxima  $E_{c\;el\acute{e}t}=E_{f\acute{o}ton}$  - W , sendo E a energia de um fóton da radiação e W a energia mínima necessária para extrair um elétron da placa. A energia de cada fóton é  $E_{f\acute{o}ton}$  = h f, sendo h a constante de Planck e f a frequência da radiação. Determine

c) a energia cinética máxima Ec de um elétron que escapa da placa de sódio;

### Rascunho

$$E_C = ?$$
  $E_C = E - W$ 


$$E_{f \circ ton} = 4 \text{ eV}$$

$$W = 2.3 \text{ eV}$$

$$E_c = E_{f \circ ton} - W$$

$$E_c = 4 - 2.3$$

$$E_c$$
 = 1,7 eV



$$W = 2,3 \text{ eV}$$

#### NOTE E ADOTE

Velocidade da radiação eletromagnética: c = 3 · 108 m/s.

$$1 \text{ nm} = 10^{-9} \text{ m}$$
.

$$h = 4 \cdot 10^{-15} \, eV.s.$$

W (sódio) = 2,3 eV.

$$1 \text{ eV} = 16 \cdot 10^{-19} \text{ J}.$$

- 2. (Fuvest 2012) Em um laboratório de física, estudantes fazem um exper comprimento de onda  $\lambda$  = 300 nm incide em uma placa de sódio, provocand da placa de sódio com energia cinética máxima  $E_{c\;el\acute{e}t}$  =  $E_{f\acute{o}ton}$  - W , send energia mínima necessária para extrair um elétron da placa. A energia de cac Planck e f a frequência da radiação. Determine
- d) a frequência  $f_0$  da radiação eletromagnética, abaixo da qual é impossível haver emissão de elétrons da placa de sódio.

#### Rascunho

Para um elétron ser arrancado

$$E_{f \circ ton} \geq W$$

Para um elétron não ser arrancado

$$E_{f \circ ton} < W$$

#### NOTE E ADOTE

Velocidade da radiação eletromagnética: c = 3 · 108 m/s

$$1 \text{ nm} = 10^{-9} \text{ m}$$
.

$$h = 4 \cdot 10^{-15} \text{ eV.s.}$$

W (sódio) = 2,3 eV.

$$1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}.$$

### Cálculo da frequência ( $f_0$ ) mínima para ocorrer o Efeito Fotoelétrico

- Nesse caso o fóton tem energia suficiente apenas para arrancar um elétron.
- O elétron é ejetado com  $E_{c\ elétron}$  = 0.

$$E_{c\ el{\acute{e}tron}}$$
 =  $E_{f{\acute{o}ton}}$ - W

$$0 = E_{f \circ ton}$$
- W

$$E_{f \circ ton} = W$$

$$h. f_0 = W \longrightarrow f_0 = \frac{W}{h}$$

$$E_{f \circ ton} = W$$

h . 
$$f_0 = W$$

4. 
$$10^{-15}$$
 eV s.  $f_0 = 2.3$  eV  $\implies$   $f_0 = \frac{2.3}{4.10^{-15}} \cdot \frac{1}{s}$ 

$$f_0 = \frac{2.3}{4.10^{-15}} \cdot \frac{1}{s}$$

$$f_0 = 0.575 \cdot 10^{15}$$

$$f_0 = 5.75 \cdot 10^{14} \text{ Hz}$$