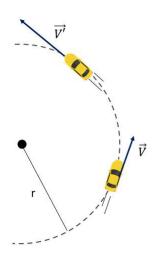
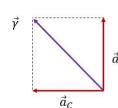

Aceleração vetorial

- Aula 6 / Apostila 1 / Página 436 / setor A


1.

2. Aceleração tangencial (\vec{a}_t)

3. Aceleração centrípeta (\vec{a}_c)



Aceleração centrípeta \vec{a}_c

Indica variação na direção e sentido de \vec{v}

> Indica que o corpo faz curva

- Intensidade: $|\vec{a}_c| = \frac{v^2}{r}$ SI: $\frac{m}{s^2}$
- Direção:
- Radial
- Sentido:
- Para o centro

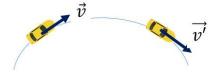
$$\gamma^2 = a_t^2 + a_c^2$$

4. Aceleração vetorial $(\vec{\gamma})$: classificação do movimento

 \vec{a}_t

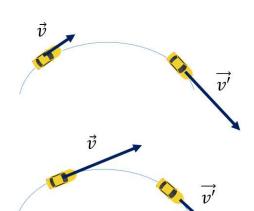
 $\vec{a}_{\mathcal{C}}$

retilíneo acelerado



MRR movimento retilíneo retardado

MCU movimento curvilíneo uniforme


 \vec{a}_t

 \vec{a}_C

 $\vec{\gamma}$

MCA movimento curvilíneo acelerado

5. Exercício do Caio

1. Em uma corrida de barcos, o movimento de um deles foi monitorado durante toda a competição. Em determinado trecho, ele executa um movimento em trajetória com formato de arco de uma circunferência de raio 9 metros. A intensidade da sua velocidade vetorial instantânea varia de acordo com a seguinte expressão:

$$v = 3 \cdot t$$
 (SI)

Pede-se para o instante t = 2 s:

- a) Classifique o movimento em acelerado ou retardado. Justifique.
- b) Indique, na figura a seguir, a direção e o sentido da aceleração tangencial (\vec{a}_t) , da aceleração centrípeta (\vec{a}_c) e da aceleração vetorial $(\vec{\gamma})$

c) Calcule a intensidade da aceleração vetorial.

O Conceito de força

- Aula 7 / Apostila 1 / Setor A / Página 440

Dinâmica

Estuda as causas do movimento

Força

<u>O que é?</u>

- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

Puxão / empurrão
Atração / repulsão
Escorregamento / tentativa de
esfregação

Quais seus efeitos?

Efeito dinâmico

- Mudar a velocidade (\vec{V})
- Causar o equilíbrio

Efeito estático

- Causar o equilíbrio
- Deformar um corpo

Exemplos

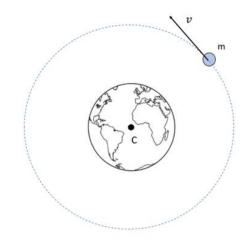
Contato
(precisa do contato)
Tração
Normal
Atrito

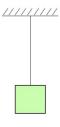
• Campo (age de longe)

- Peso / Força gravitacional
- Força elétrica
- Força magnética

Força elétrica (\overrightarrow{F}_{el})

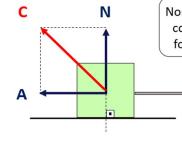
Força magnética (\vec{F}_{mag})




Peso ou força gravitacional (\vec{P})

- Conceito: atração exercida pela Terra ou qualquer astro
- Direção: vertical
- Sentido: para baixoCondição: proximidade ao astro

Força de tração (\overrightarrow{T})


- Conceito: impede a separação
- Direção: a mesma do fio
- Sentido: do puxão
- Condição: tentativa de separação

Força de contato (\vec{C})

$$C^2 = N^2 + A^2$$

Normal (\overrightarrow{N})

- Conceito: impede a penetração
- Direção: perpendicular à superfície de apoio
- Sentido: contrário à tendência de penetração
- Condição: tentativa de penetração

Normal e atrito são componentes da força de contato

Atrito (\overrightarrow{A})

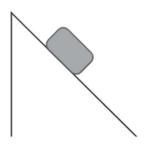
- Conceito: impede ou tenta impedir o escorregamento
- Direção: paralela à superfície de apoio
- Sentido: contrária ao escorregamento ou tentativa de escorregamento
- Condição: escorregamento ou tentativa de escorregamento / rugosidades

Exercícios

- 1. Represente as forças aplicadas sobre o corpo no esquema a seguir:
- a) <u>Bola</u> de basquete arremessada (despreze a resistência do ar)

Situação real

Esquema

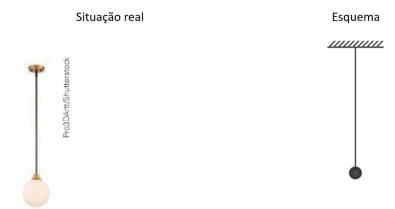


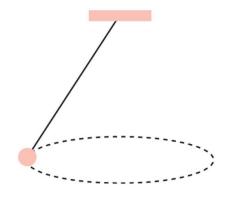
b) **Cachorro** descendo uma rampa com atrito

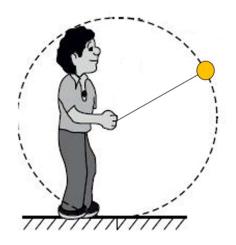
Situação real

Esquema

c) **Vaso** sobre apoio horizontal


Situação real


Esquema


d) Um <u>lustre</u> em repouso

e) Marque as forças exercidas sobre a <u>esfera</u> do pêndulo cônico. (despreze a resistência do ar)

f) Menino girando uma <u>pedra</u> (despreze a resistência do ar)

