

Aceleração vetorial

- Aula 6 / Apostila 1 / Página 436 / setor A

Apresentação e demais documentos: fisicasp.com.br

Professor Caio

Velocidade escalar média x aceleração escalar média

Velocidade escalar média

Taxa de **variação** temporal da **posição**

$$v_m = \frac{\Delta S}{\Delta t} = \frac{s' - s}{t' - t}$$

Aceleração escalar média

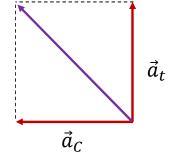
Taxa de **variação** temporal da **velocidade**

$$a_m = \frac{\Delta v}{\Delta t} = \frac{v' - v}{t' - t}$$

1. Aceleração vetorial $(\vec{\gamma})$

Aceleração vetorial $(\vec{\gamma})$

Mudança na


Velocidade vetorial (\vec{v})

Intensidade da velocidade vetorial

módulo da velocidade escalar

Indica que o corpo fica mais rápido ou mais devagar \vec{v} \vec{v}

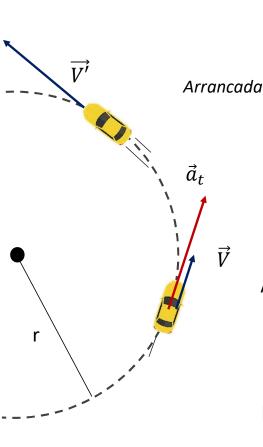
Intensidade : $|\vec{v}| = |v|$

direção: tangente à trajetória

sentido: o mesmo do movimento

Indica que o corpo faz curva

Como calcular?


 $v = v_0 + a \cdot t$

 $v^{2} = v_{0}^{2} + 2a.\Delta S$

 $s = s_0 + v_0 \cdot t + \frac{1}{2} a \cdot t^2$

 $a = \frac{\Delta v}{\Delta t}$

$lue{}$ 2. Aceleração vetorial ($\overrightarrow{\gamma}$)

Aceleração tangencial

Indica variação na intensidade de \vec{v}

Indica que o corpo fica mais rápido ou mais devagar

Intensidade da

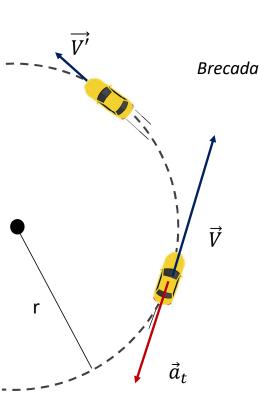
módulo da aceleração escalar

- Tangente à trajetória Direção:
- Sentido: Movimento acelerado - \vec{a}_t e \vec{v} tem mesmo sentido
 - Movimento retardado
 - \vec{a}_t e \vec{v} tem sentidos opostos

aceleração tangencial

Intensidade: $|\vec{a}_t| = |a|$ SI: $\frac{m}{s^2}$

Como calcular?


 $v = v_0 + a \cdot t$

 $v^{2} = v_{0}^{2} + 2a.\Delta S$

 $s = s_0 + v_0 \cdot t + \frac{1}{2} a \cdot t^2$

 $a = \frac{\Delta v}{\Delta t}$

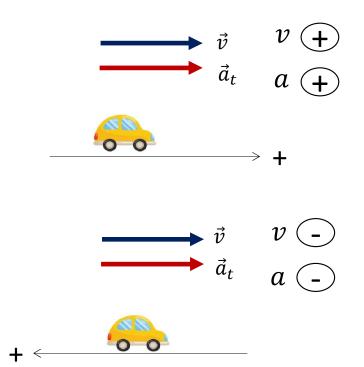
$lue{}$ 2. Aceleração vetorial ($\overrightarrow{oldsymbol{\gamma}}$)

Intensidade da aceleração tangencial

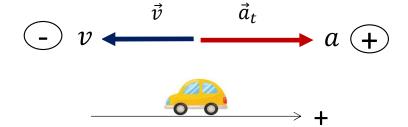
módulo da aceleração escalar

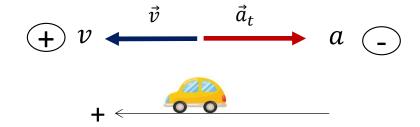
- Tangente à trajetória Direção:
- Sentido: Movimento acelerado - \vec{a}_t e \vec{v} tem mesmo sentido
 - Movimento retardado
 - \vec{a}_t e \vec{v} tem sentidos opostos

Intensidade: $|\vec{a}_t| = |a|$ SI: $\frac{m}{s^2}$

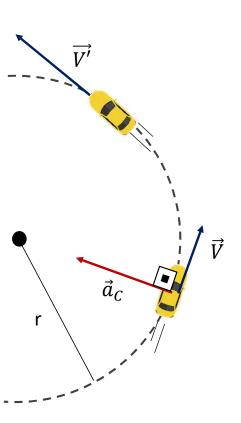

Indica que o corpo fica mais rápido ou mais devagar

Aceleração tangencial


Indica variação na intensidade de \vec{v}

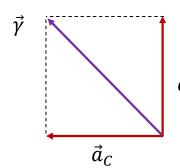

KEEP CALM STUDY PHYSICS

Cinemática escalar e cinemática vetorial


- a e v têm mesmo sinal
- |v| aumenta
- movimento acelerado
- "arrancada"
- Rapidez aumenta

- a e v têm sinais contrários
- |v| diminui
- movimento retardado
- "brecada"
- Rapidez dimui

$lue{a}$ 3. Aceleração centrípeta (\vec{a}_c)



Aceleração centrípeta \vec{a}_c

Indica variação na direção e sentido de \vec{v}

Indica que o corpo faz curva

- Intensidade: $|\vec{a}_c| = \frac{v^2}{r}$ SI: $\frac{1}{2}$
- Direção: Radial
- Sentido: Para o centro

$$\vec{\gamma} = \vec{a}_t + \vec{a}_c$$

$$\gamma^2 = a_t^2 + a_c^2$$

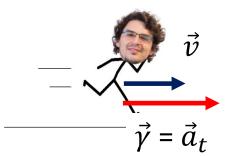
— 4. Aceleração vetorial ($\vec{\gamma}$): classificação do movimento

 $\vec{\gamma} = \vec{a}_t + \vec{a}_c$

MRU movimento retilíneo uniforme

 \vec{a}_t

 $\vec{a}_{\it C}$

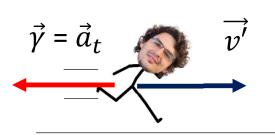

•

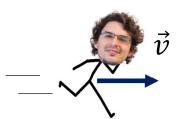
 $\vec{a}_t = \vec{0}$

 $\vec{a}_C = \vec{0}$

 $\vec{\gamma} = \vec{0}$

MRA movimento retilíneo acelerado



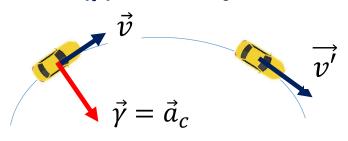

 $\vec{a}_t \neq \vec{0}$

 $\vec{a}_C = \vec{0}$

 $\vec{\gamma} = \vec{a}_t$

MRR movimento retilíneo retardado

$$\vec{a}_t \neq \vec{0}$$


$$\vec{a}_C = \vec{0}$$

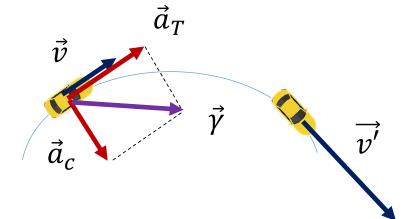
$$\vec{\gamma} = \vec{a}_t$$

— 4. Aceleração vetorial ($\vec{\gamma}$): classificação do movimento

 $\vec{\gamma} = \vec{a}_t + \vec{a}_c$

MCU movimento curvilíneo uniforme

 \vec{a}_t

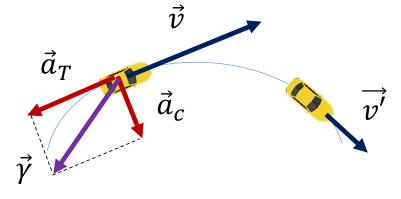

 \vec{a}_C

$$\vec{a}_t = \vec{0}$$

$$\vec{a}_C \neq \vec{0}$$

$$\vec{\gamma} = \vec{a}_c$$

MCA movimento curvilíneo acelerado



 $\vec{a}_t \neq \vec{0}$

$$\vec{a}_C \neq \overline{0}$$

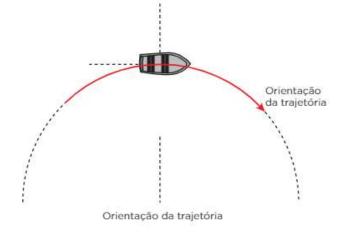
$$\vec{a}_C \neq \vec{0} \qquad \qquad \vec{\gamma} = \vec{a}_t + \vec{a}_c$$

MCR movimento curvilíneo retardado

 $\vec{a}_t \neq \vec{0}$

$$\vec{a}_C \neq \vec{0}$$

$$\vec{\gamma} = \vec{a}_t + \vec{a}_c$$


Exercícios do Caio

1. Em uma corrida de barcos, o movimento de um deles foi monitorado durante toda a competição. Em determinado trecho, ele executa um movimento em trajetória com formato de arco de uma circunferência de raio 9 metros. A intensidade da sua velocidade vetorial instantânea varia de acordo com a seguinte expressão:

$$v = 3 \cdot t$$
 (SI)

Pede-se para o instante t = 2 s:

- a) Classifique o movimento em acelerado ou retardado. Justifique.
- b) Indique, na figura a seguir, a direção e o sentido da aceleração tangencial (\vec{a}_t) , da aceleração centrípeta (\vec{a}_c) e da aceleração vetorial $(\vec{\gamma})$

c) Calcule a intensidade da aceleração vetorial.

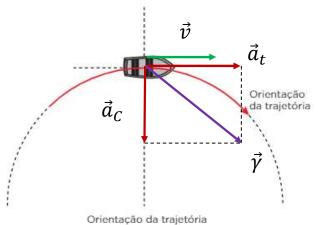
$$r = 9 m$$

$$v = 3 \cdot t$$
 (SI) $a_t = a = 3 \frac{m}{s^2}$ $v_{(2)} = 6 \frac{m}{s}$

$$v_{(2)} = 6 \frac{m}{s}$$

$$v = v_0 + a \cdot t \qquad v_0 = 0$$

$$v_0 = 0$$


Pede-se para o instante t = 2 s:

a) Classifique o movimento em acelerado ou retardado. Justifique.

Acelerado, pois a intensidade da velocidade escalar aumenta.

b) Indique, na figura a seguir, a direção e o sentido da aceleração tangencial (\vec{a}_t) , da aceleração centrípeta (\vec{a}_c) e da

aceleração vetorial $(\vec{\gamma})$

c) Calcule a intensidade da aceleração vetorial.

$$a_c = \frac{v^2}{r} = \frac{6^2}{9} = 4\frac{m}{s^2}$$
 e $a_t = 3\frac{m}{s^2}$

e
$$a_t = 3\frac{r}{s}$$

$$\gamma^2 = a_t^2 + a_c^2 = 3^2 + 4^2$$
 $\therefore \gamma = 5 \frac{m}{c^2}$

$$\therefore \gamma = 5 \; \frac{m}{s^2}$$

O conceito de força

- Aula 7 / Apostila 1 / Setor A / Página 440

Apresentação e demais documentos: fisicasp.com.br

Professor Caio Gomes

Dinâmica

Estuda as causas do movimento

Força

<u>O que é?</u>

- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

Puxão / empurrão
Atração / repulsão
Escorregamento / tentativa de

esfregação

Quais seus efeitos?

Efeito dinâmico

- Mudar a velocidade (\vec{V})
- Causar o equilíbrio

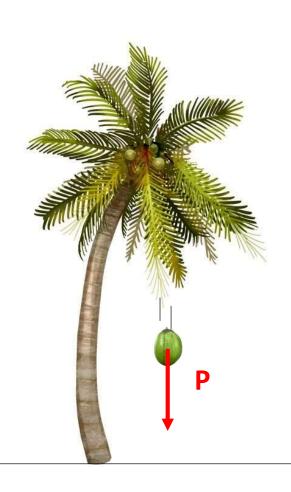
Efeito estático

- Causar o equilíbrio
- Deformar um corpo

Exemplos

- Contato
 (precisa do contato)
 Tração
 Normal
 Atrito
- Campo (age de longe)
- Peso / Força gravitacional
- Força elétrica
- Força magnética

Força elétrica (\overrightarrow{F}_{el})



Força

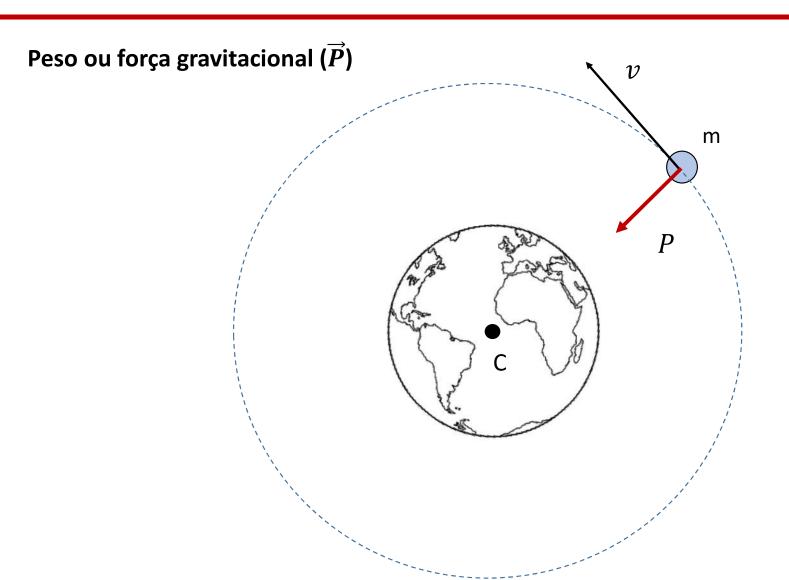
O que é?

- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

Peso ou força gravitacional (\overrightarrow{P})

• Conceito: atração exercida pela Terra ou qualquer astro

• **Direção**: vertical


• Sentido: para baixo

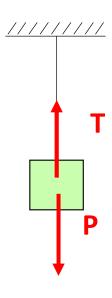
• Condição: proximidade ao astro

Força

<u>O que é?</u>

- · Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

Força


<u>O que é?</u>

- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

Puxão / empurrão Atração / repulsão Escorregamento / tentativa de

esfregação

Força de tração (\overrightarrow{T})

Conceito: impede a separação

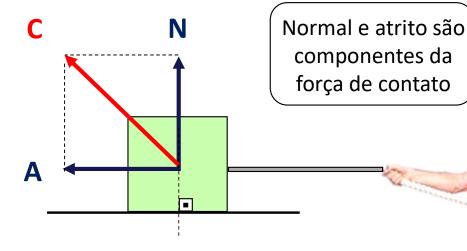
• Direção: a mesma do fio

• Sentido: do puxão

• Condição: tentativa de separação

Força

<u>O que é?</u>


- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

Força de contato (\vec{C})

$$C^2 = N^2 + A^2$$

Normal (\overrightarrow{N})

- Conceito: impede a penetração
- **Direção**: perpendicular à superfície de apoio
- Sentido: contrário à tendência de penetração
- Condição: tentativa de penetração

Atrito (\overrightarrow{A})

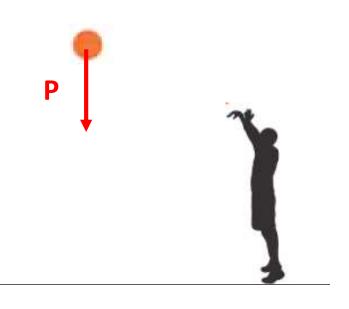
- Conceito: impede ou tenta impedir o escorregamento
- **Direção**: paralela à superfície de apoio
- Sentido: contrária ao escorregamento ou tentativa de escorregamento
- Condição: escorregamento ou tentativa de escorregamento / rugosidades

Exercícios do Caio

1. Represente as forças aplicadas sobre o corpo no esquema a seguir:

E a força exercida pela mão?

Ficou no passado!

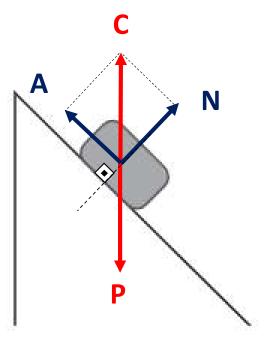

a) **Bola** de basquete arremessada (despreze a resistência do ar)

Situação real

Força O que é? Grandeza vetorial • Interação entre um par de corpos • Ação de um corpo sobre outro Puxão / empurrão Atração / repulsão Escorregamento / tentativa de esfregação

b) **Cachorro** descendo uma rampa com atrito

Situação real

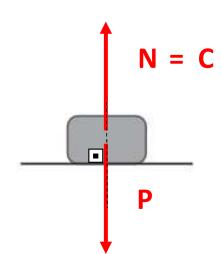

Força

<u>O que é?</u>

- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

Puxão / empurrão Atração / repulsão Escorregamento / tentativa de esfregação

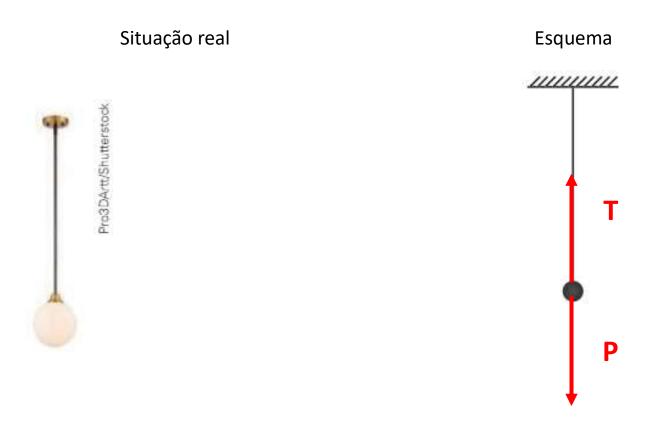
Esquema



c) **Vaso** sobre apoio horizontal

Situação real

Esquema

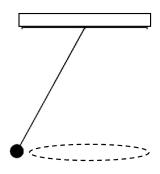


Força

<u>O que é?</u>

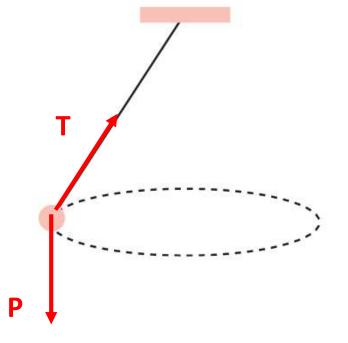
- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

d) Um <u>lustre</u> em repouso



Força

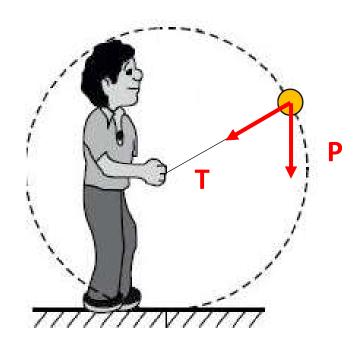
<u>O que é?</u>


- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

e) Marque as forças exercidas sobre a <u>esfera</u> do pêndulo cônico. (despreze a resistência do ar)

E a força exercida pela mão?

Ficou no passado!


Força

O que é?

- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

f) Menino girando uma **pedra** (despreze a resistência do ar)

Força

<u>O que é?</u>

- Grandeza vetorial
- Interação entre um par de corpos
- Ação de um corpo sobre outro

Puxão / empurrão Atração / repulsão Escorregamento / tentativa de esfregação

E a força exercida pela mão?

Está agindo sobre fio!