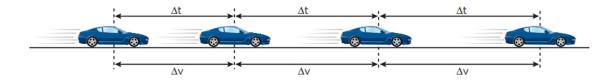


Física – setor A

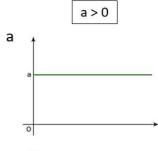

PROF. CAIO

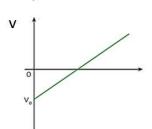
Movimento uniforme variado (MUV)

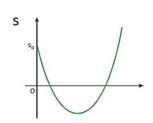
- Aulas 5 e 6 / Apostila 1
- Capítulo 4 Mec. Newtoniana / Caderno de estudos 1

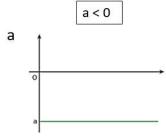
1. Movimento Uniformemente Variado (MUV): definição

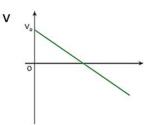
• Em intervalos de tempo iguais, a velocidade escalar do corpo sofre variações iguais

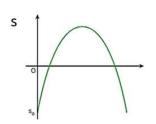



2. Função horária dos espaços


3. Função horária das velocidades


4. Equação de Torricelli


5. Gráficos



$$a_{cte} = \frac{\Delta v}{\Delta t}$$

$$v = v_0 + a \cdot t$$

MUV

$$S = S_0 + V_0.t + \frac{1}{2}a.t^2$$

$$v^2 = {v_0}^2 + 2a.\Delta S$$

Velocidade vetorial

- Aula 7 / Apostila 1
- Capítulo 5 Mecânica Newtoniana / Caderno de estudos 1

1. Grandeza Física

Tudo que pode ser medido com um instrumento.

1.2 Grandeza física escalar

- Tem apenas intensidade (quantidade).
- Fica bem caracterizada / representada pelo número e pela unidade de medida.

Exemplos:		Representação
•	Intervalo de tempo	$\Delta t = 5 \text{ s}$
•	Massa	m = 10 kg
•	Temperatura	Θ = 40°C
•	Volume	$V = 3 \text{ m}^3$

1.3 Grandeza física vetorial

- Tem intensidade (quantidade), direção e sentido.
- Fica bem caracterizada / representada pelo método gráfico ou método analítico.

Exemplos:

- Deslocamento vetorial
- Força
- Velocidade
- Aceleração

Paraíso

sentido

Representação pelo método analítico (texto e símbolos)

Intensidade $|\vec{d}| = d = 500 \text{ m}$

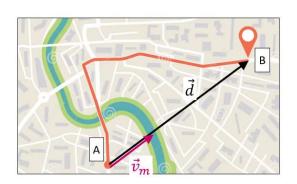
direção: Av. Paulista

sentido: Para o bairro do Paraíso

Exemplos de direção e sentido

Direção: a mesma de uma reta Sentido: para onde aponta o vetor

vertical horizontal


direção Norte-Sul

para cima ou para baixo para direita ou para esquerda para o Sul ou para o norte

2. Velocidade vetorial média (\vec{v}_m)

$$\vec{v}_m = \frac{\vec{d}}{\Delta t}$$

Velocidade vetorial média e o deslocamento vetorial têm mesma direção e sentido

Intensidade ou módulo da velocidade vetorial média Intensidade ou módulo do deslocamento vetorial (comprimento do vetor)

$$|\vec{v}_m| = \frac{|\vec{d}|}{\Delta t}$$

SI:
$$[v_m] = m/s$$

4. Velocidade vetorial instantânea (\vec{v})

Intensidade / módulo / magnitude: $|\vec{v}| = |v|$ = indicação do velocímetro

sentido: o mesmo do movimento

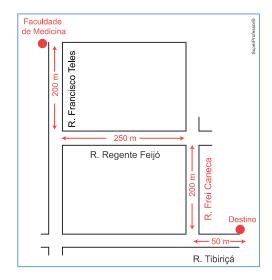
00

A intensidade da velocidade vetorial instantânea $|\vec{v}|$

é igual ao

módulo da velocidade escalar instantânea |v|

5. Classificação dos movimentos: variação da velocidade vetorial (\vec{v})


Nome	Direção e sentido	Intensidade	\vec{v}			
MRU movimento retilíneo uniforme					<u> </u>	
MRA movimento retilíneo acelerado				-		
MRR movimento retilíneo retardado						
Nome MCU movimento	Direção e sentido	Intensidade		$ec{v}$		
curvilíneo uniforme MCA movimento curvilíneo acelerado						
MCR movimento curvilíneo retardado						

Exercícios
1. O carro do professor PH está em repouso e a 80 metros de um semáforo que irá fechar em 10s. Calcule a aceleração mínima necessária para que nosso mestre consiga chegar ao semáforo ainda aberto.

2. Um carro viajava com velocidade inicial de 30 m/s quando um animal invadiu a pista à frente. Sabendo que, apó acionado o pedal de freio, o módulo da aceleração do carro foi de 5 m/s² e que o carro parou um pouquinho antes danimal, calcule a distância percorrida durante a frenagem. Despreze o tempo de reação do motorista.	is lo

3. Uma pessoa saiu da Faculdade de Medicina Anglo São Paulo, caminhou 200 m pela rua Francisco Teles, entrou à esquerda na rua Regente Feijó, onde caminhou por 250 m, entrou à direita na rua Frei Caneca, caminhou 200 m por ela e, finalmente, entrou à esquerda na rua Tibiriçá, por onde caminhou mais 50 m até o seu destino. O intervalo de tempo para execução do trajeto foi de 6 minutos e 40 s.

Calcule a velocidade escalar média e a intensidade da velocidade vetorial média da pessoa, ambas em m/s.

