Velocidade vetorial

- Aula 3 / Página 426 / Apostila 1
- Caderno de estudos 1 / Capítulo 1 / Mecânica Newtoniana

Apresentação e demais documentos: **fisicasp.com.br**

Professor Caio Gomes – setor A

1. Grandeza Física

Tudo que pode ser medido com um instrumento.

Exemplos: *Intervalo de tempo*

Massa

Temperatura

Volume

1.2 Grandeza física escalar

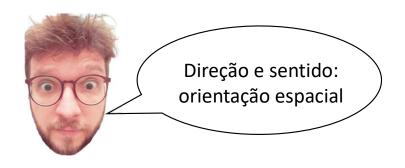
- Tem apenas intensidade (quantidade).
- Fica bem caracterizada / representada pelo número e pela unidade de medida.

Exemplos:

Intervalo de tempo

- Massa
- Temperatura
- Volume

Representação


$$\Delta t = 5 s$$

$$m = 10 \text{ kg}$$

$$V = 3 \text{ m}^3$$

1.3 Grandeza física vetorial

- Tem intensidade (quantidade), direção e sentido.
- Fica bem caracterizada / representada pelo método gráfico ou método analítico.

Exemplos:

- Deslocamento vetorial
- Força
- Velocidade
- Aceleração

1.3 Grandeza física vetorial

Representação pelo método gráfico (vetor)

1.3 Grandeza física vetorial

Representação pelo método analítico (texto e símbolos)

Intensidade : $|\vec{d}|$ = d = 500 m

direção: Av. Paulista

sentido: Para o bairro do Paraíso

Exemplos de direção e sentido

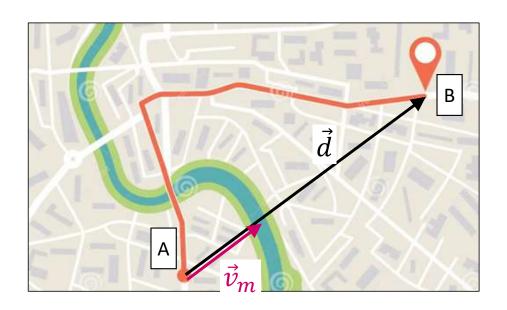
Direção: a mesma de uma reta **Sentido**: para onde aponta o vetor

vertical para cima ou para baixo

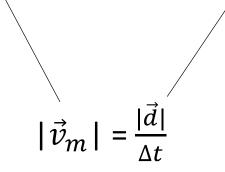
horizontal para direita ou para esquerda

direção Norte-Sul para o Sul ou para o norte

2. Deslocamento vetorial (\vec{d})

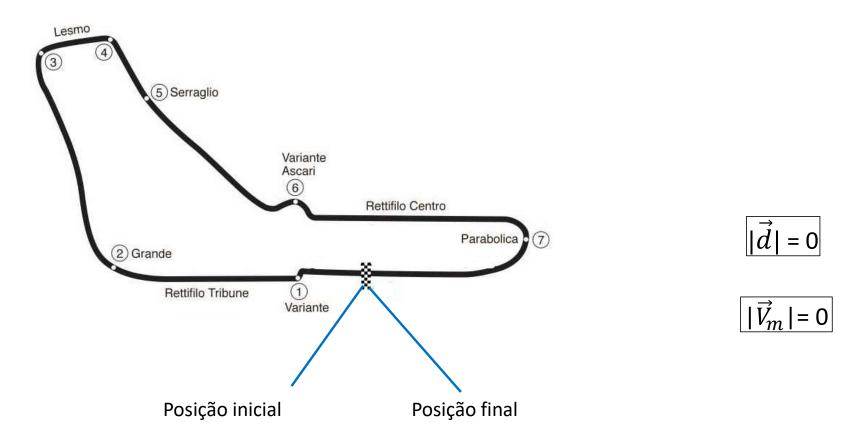

- Indica a posição inicial e a posição final do corpo.
- Representado por um vetor com origem na posição de partida e a outra extremidade na posição de chegada.

3. Velocidade vetorial média (\vec{v}_m)


$$\vec{v}_m = \frac{\vec{d}}{\Delta t}$$

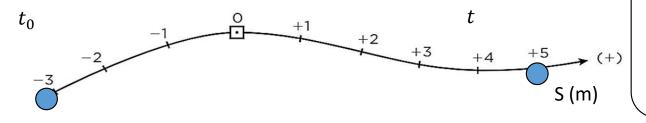
Velocidade vetorial média e o deslocamento vetorial têm mesma direção e sentido

Intensidade ou módulo da velocidade vetorial média


Intensidade ou módulo do deslocamento vetorial (comprimento do vetor)

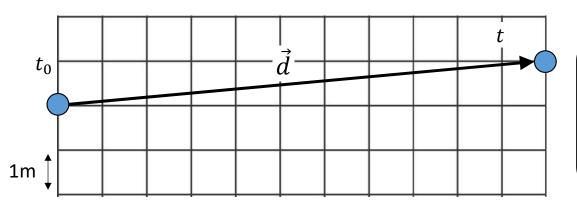
SI:
$$[v_m] = m/s$$

Exemplo


Qual a intensidade do deslocamento vetorial após o carro completar um volta?

Comparação

Deslocamento escalar (Δs) e velocidade escalar média (v_m)



- Δs : Ocorre sobre uma trajetória conhecida
- $\Delta s = s s_0$

•
$$v_m = \frac{\Delta s}{\Delta t}$$

Deslocamento vetorial (\vec{d}) e velocidade vetorial média (\vec{v}_m)

- $ec{d}$: Vetor que leva de onde começou para onde terminou
- $|\vec{d}|$ (comprimento do vetor)

•
$$|\vec{v}_m| = \frac{|\vec{d}|}{\Delta t}$$

4. Velocidade vetorial instantânea (\vec{v})

 $ec{v}$

Intensidade: $|\vec{v}| = |v|$ = indicação do velocímetro

direção: tangente à trajetória

sentido: o mesmo do movimento

 t_1 \vec{v}_1 t_3 \vec{v}_3

A intensidade da velocidade vetorial instantânea $|\vec{v}|$

é igual ao

módulo da velocidade escalar instantânea |v|

— 5. Classificação dos movimentos: variação da velocidade vetorial (\overrightarrow{v})

Varia

(Diminui)

Constante

movimento

retilíneo

retardado

Intensidade / módulo / magnitude: $|\vec{v}| = v$

direção: tangente à trajetória

sentido: o mesmo do movimento

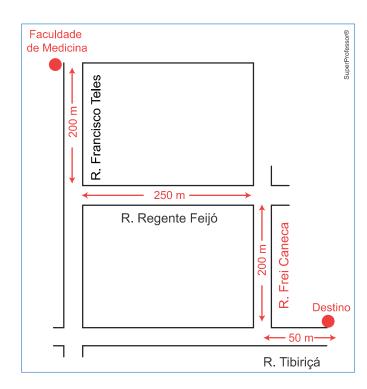
Nome	Direção e sentido	Intensidade	$ec{v}$		→
MRU movimento retilíneo uniforme	Constante	Constante	Constante	$-\vec{v}$	\vec{v}
MRA movimento retilíneo acelerado	Constante	Varia (Aumenta)	V aria	$ \vec{v}$	$=$ \overrightarrow{v}'
MRR				→ 12	\rightarrow

Varia

$lue{v}$ 5. Classificação dos movimentos: variação da velocidade vetorial (\overrightarrow{v})

Intensidade / módulo / magnitude: $|\vec{v}| = v$

direção: tangente à trajetória


sentido: o mesmo do movimento

Nome	Direção e sentido	Intensidade	$ec{v}$		
MCU movimento curvilíneo uniforme	Variam	Constante	Varia	\vec{v}	\vec{v}'
MCA movimento curvilíneo acelerado	Variam	Varia (Aumenta)	Varia	\vec{v}	\vec{v}'
MCR movimento curvilíneo retardado	Variam	Varia (Diminui)	Varia	\vec{v}	\vec{v}'

Exercício

Uma pessoa saiu da Faculdade de Medicina Anglo São Paulo, caminhou 200 m pela rua Francisco Teles, entrou à esquerda na rua Regente Feijó, onde caminhou por 250 m, entrou à direita na rua Frei Caneca, caminhou 200 m por ela e, finalmente, entrou à esquerda na rua Tibiriçá, por onde caminhou mais 50 m até o seu destino. O intervalo de tempo para execução do trajeto foi de 6 minutos e 40 s.

Calcule a velocidade escalar média e a intensidade da velocidade vetorial média da pessoa, ambas em m/s.

