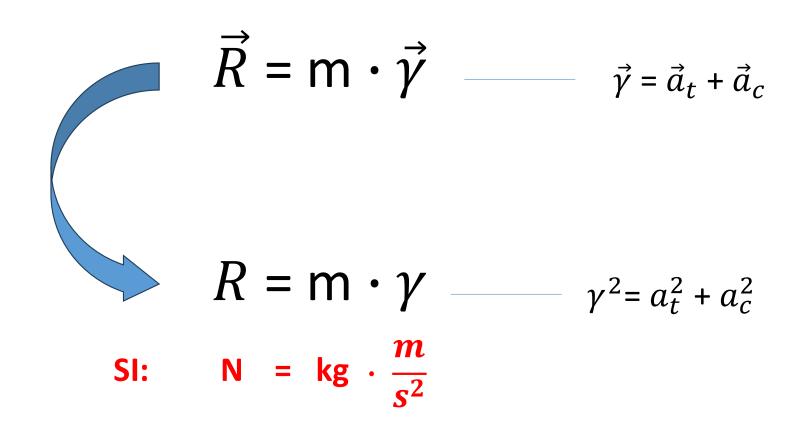


Aula 13 - Princípio Fundamental da Dinâmica: apresentação e discussões

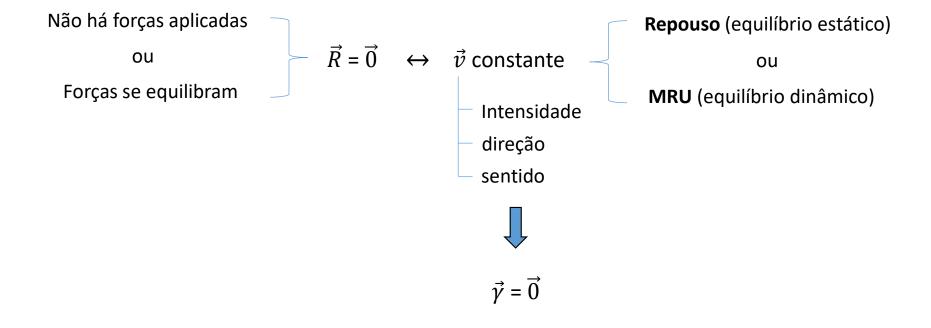
- Caderno do aluno 2 / Aula 14 / Pg. 326

Apresentação e demais documentos: **fisicasp.com.br**

Professor Caio – Física A

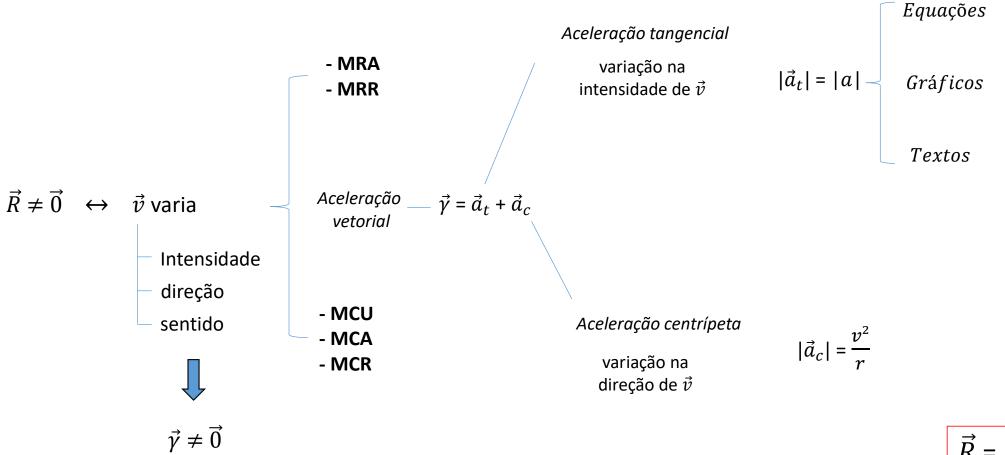

1ª Lei: Princípio da Inércia

Leis de Newton


2ª Lei: Princípio Fundamental

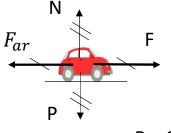
3º Lei: Princípio da Ação e Reação

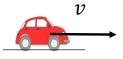
1. 2ª lei de Newton: princípio fundamental da dinâmica



Princípio da Inércia: enunciado formal (revisão)

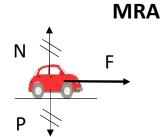
 $\vec{R} = m \cdot \vec{\gamma}$

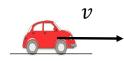

Mapa conceitual

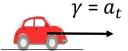

$$\vec{R}$$
 = m . $\vec{\gamma}$

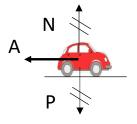
Análise qualitativa

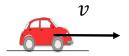
MRU




$$\gamma = 0$$


Análise qualitativa



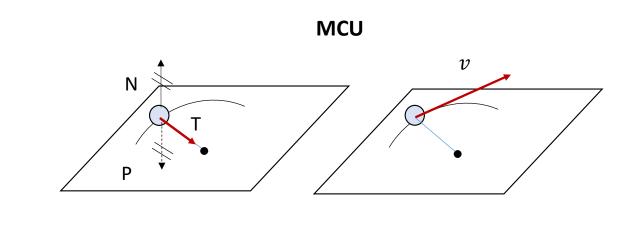


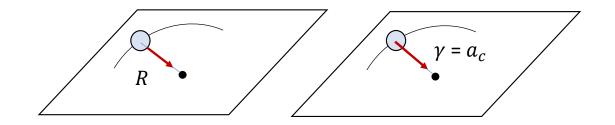
MRR

$$\gamma = a_t$$

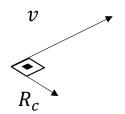
ângulo entre v e R: 0 \longrightarrow R

ângulo entre v e R:
$$180^{\circ}$$
 $\stackrel{R}{\longleftarrow}$ $\stackrel{v}{\longleftarrow}$

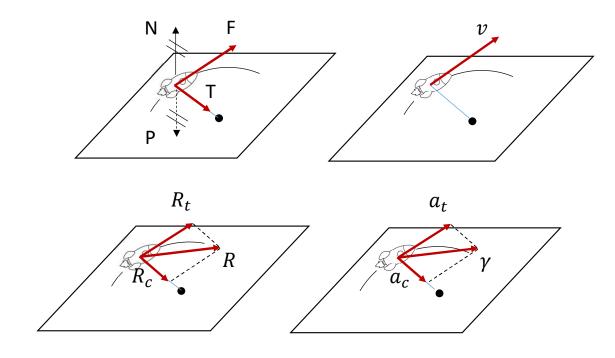

$$R = m \cdot a_t$$

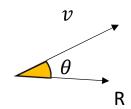


$$R = m \cdot |a|$$


Análise qualitativa

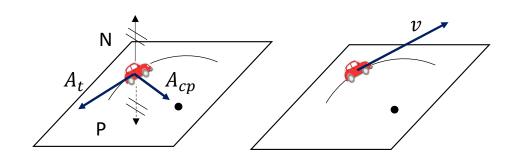
 $R_c = m \cdot a_c$

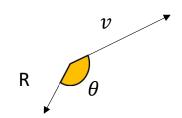

ângulo entre v e R: 90°

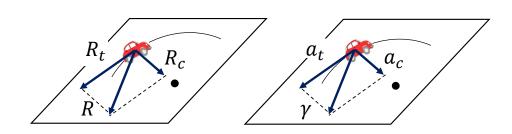


Análise qualitativa

MCA


ângulo entre v e R: agudo


$$R = m \cdot \gamma$$


Análise qualitativa

MCR

ângulo entre v e R: obtuso

$$R = m \cdot \gamma$$

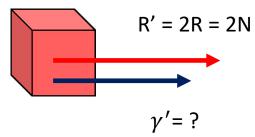
m = 1 kg

R = 1N

 $\gamma = 1 \text{ m/s}^2$

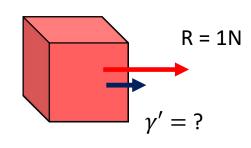
Análise quantitativa

Princípio fundamental da dinâmica


$$\vec{R}$$
 = m . $\vec{\gamma}$

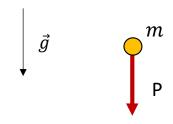
SI: N kg $\frac{m}{s^2}$

1N = 1kg .
$$1\frac{m}{s^2}$$


m = 1 kg

$$\uparrow$$
 R = m_{cte} . γ \uparrow

$$\gamma = \frac{R}{m} = \frac{2}{1} = 2 \, m/s^2$$


$$m' = 2m = 2 kg$$

$$\downarrow \gamma = \frac{R_{cte}}{m \uparrow}$$

$$\gamma = \frac{R}{m} = \frac{1}{2} = 0.5 \ m/s^2$$

Dica: corpo somente sob a ação do peso

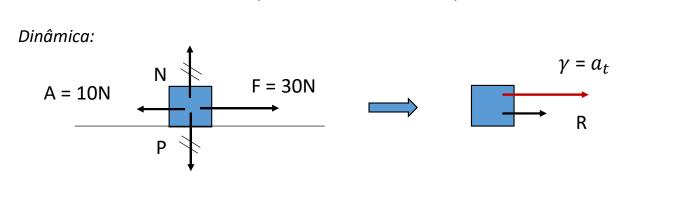
$$|\vec{\gamma}| = |\vec{a}_t| = |a| = ? = g$$

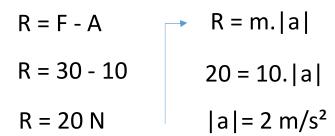
$$R = P$$

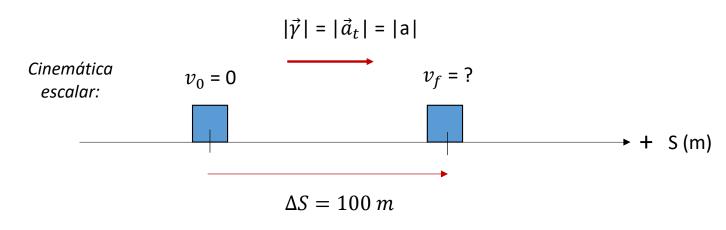
$$|a| = |a| = |a| \cdot g$$

Aula 14 - Aplicações das leis de Newton

- Caderno do aluno 2 / Aula 15 / Pg. 329

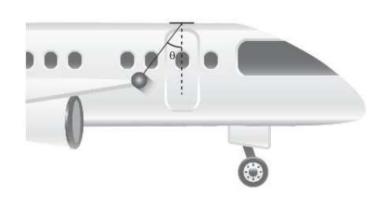

Apresentação e demais documentos: **fisicasp.com.br**


Professor Caio – Física A


Exercícios do Caio

1. Um objeto, cujas dimensões são desprezíveis, desliza apoiado sobre uma superfície horizontal e plana. A massa do objeto é de 10 kg e a trajetória do movimento é uma linha reta. Considere uma força de atrito constante entre o objeto e a superfície, de intensidade A = 10 N. O movimento do objeto deve-se somente à ação de uma força aplicada F, que tem direção horizontal e intensidade constante de F = 30 N. Considerando-se o objeto inicialmente em repouso, calcule o módulo de sua velocidade após ter sido deslocado por uma distância de 100 m.

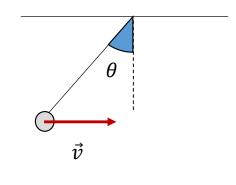
1. Um objeto, cujas dimensões são desprezíveis, desliza apoiado sobre uma superfície horizontal e plana. A massa do objeto é de 10 kg e a trajetória do **movimento é uma linha reta**. Considere uma força de atrito constante entre o objeto e a superfície, de intensidade A = 10 N. O movimento do objeto deve-se somente à ação de uma força aplicada F, que tem direção horizontal e intensidade constante de F = 30 N. Considerando-se o objeto inicialmente em repouso, calcule o módulo de sua velocidade após ter sido deslocado por uma distância de 100 m.

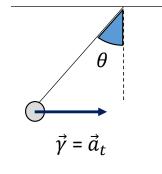


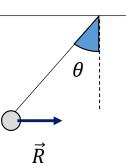
$$v_f^2 = v_0^2 + 2a\Delta S$$
 $v_f^2 = 0 + 2.2.100$
 $v_f^2 = 400$
 $v_f = 20 \text{ m/s}$

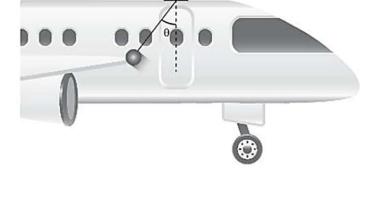
2. Durante a decolagem de um avião, um indivíduo curioso resolveu levar um pêndulo e segurá-lo, como se ele estivesse fixo no teto. Ele percebeu que, enquanto a aceleração do avião era constante, o ângulo entre o fio e a direção vertical não mudava, ou seja, o pêndulo permanecia em repouso em relação ao avião.

Calcule a intensidade da tração, da resultante e da aceleração escalar do conjunto em relação ao solo.

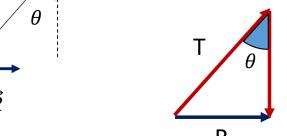


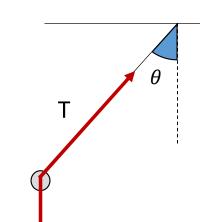

Note e adote:


- $\theta = 25^{\circ}$
- sen 25° = 0,42
- cos 25° = 0,9
- \blacksquare tg 25° = 0,47
- $g = 10 \text{ m/s}^2$
- Massa do pêndulo = 200 g

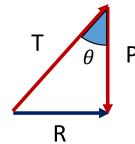

2. Durante a decolagem de um avião, um indivíduo curioso resolveu levar um pêndulo e segurá-lo, como se ele estivesse fixo no teto. Ele percebeu que, enquanto a aceleração do avião era constante, o ângulo entre o fio e a direção vertical não mudava, ou seja, o pêndulo permanecia em repouso em relação ao avião.

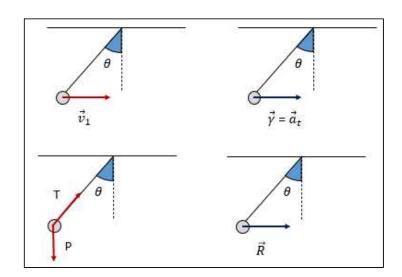
Calcule a intensidade da tração, da resultante e da aceleração escalar do conjunto em relação ao solo.





2. Durante a decolagem de um avião, um indivíduo curioso resolveu levar um pêndulo e segurá-lo, como se ele estivesse fixo no teto. Ele percebeu que, enquanto a aceleração do avião era constante, o ângulo entre o fio e a direção vertical não mudava, ou seja, o pêndulo permanecia em repouso em relação ao avião.


Calcule a intensidade da tração, da resultante e da aceleração do conjunto em relação ao solo.



$$P = m.g$$

$$m = 200 g = 0.2 kg$$

$$P = 0.2 . 10 = 2 N$$

$$\cos\theta = \frac{P}{T}$$

$$0,9 = \frac{2}{T}$$

$$T = \frac{2}{0.9} \cong 2,22 N$$

$$tg \theta = \frac{R}{P}$$

$$0,47 = \frac{R}{2}$$

$$R = 0.94 N$$

$$|\vec{\gamma}| = |\vec{a}_t| = |\mathbf{a}|$$
?

$$R = m \cdot |a|$$

$$|a| = \frac{R}{m} = \frac{0.94}{0.2} = 4.7 \frac{m}{s^2}$$

Note e adote:

- $\theta = 25^{\circ}$
- sen 25° = 0,42
- cos 25° = 0,9
- tg 25° = 0,47
- $g = 10 \text{ m/s}^2$
- Massa do pêndulo = 200 g

